IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 11, NOVEMBER 1977

dielectric waveguides,” Bell Syst. Tech. J., vol. 48, pp. 2133-2160,
Sept. 1969.

[4] R. Pregla, “A method for the analysis of coupled rectangular dielec-
tric waveguides,” Arch. Elekt. Ubertragung, band. 28, pp. 349-357,
Sept. 1974.

[5] A. L. Cullen and O. Ozkan, “Coupled parallel rectangular dielectric
waveguides,” Proc. Inst. Elec. Eng., vol. 122, pp. 593599, June 1975.

[6] J. F. Heitmann, “Theory and fabrication of dielectric image lines and
measurements in the frequency range from 26.5 to 40 GHz,” NTZ-
Aufsitze, vol. 28, pp. 279-284, Aug. 1975.

[7]' K. Ogusu and K. Hongo, “Analysis of dielectric waveguides by
generalized telegraphist’s equations,” Trans. Inst. Electron. Commun.
Eng. Jap., (Corresp.) vol. J60-B, pp. 358-359, May 1977

[8] , “Experimental investigation of dispersion characteristics in
rectangular dielectric waveguides,” Trans. Inst. Electron. Commun.
Eng. Jap., to be published.

[9] J. E. Goell, “Rib waveguide for integrated optical circuits,” Appl.
Optics, vol. 12, pp. 2797-2798, Dec. 1973.

885

[10] H. Furuta, H. Noda, and A. Ihaya, “Novel optical waveguide for
integrated optics,” Appl. Optics, vol. 13, pp. 322-326, Feb. 1974.

[11] E. A. J. Marcatili, “Slab-coupled waveguides,” Bell Syst. Tech. J., vol.
53, pp. 645-674, Apr. 1974.

[12] V. Ramaswamy, “Strip-loaded film waveguide,” Bell Syst. Tech. J.,
vol. 53, pp. 697-704, Apr. 1974.

[13] D. Marcuse, “Theory of the single-material fiber,” Bell Syst. Tech. J.,
vol. 53, pp. 1619-1641, Oct. 1974.

[14] W. V. McLevige, T. Itoh, and R. Mittra, “New waveguide structures
for millimeter-wave and optical integrated circuits,” IEEE Trans.
Microwave Theory Tech., vol. MTT-23, pp. 788-794, Oct. 1975.

[15] T. Itoh, “Inverted strip dielectric waveguide for millimeter-wave in-
tegrated circuits,” IEEE Trans. Microwave Theory Tech., vol
MTT-24, pp. 821-827, Nov. 1976.

[16] S. A. Schelkunoff, “Generalized telegraphist’s equations for wave-
guides,” Bell Syst. Tech. J., vol. 31, pp. 784-801, July 1952.

[17] N. Marcuvitz, Waveguide Handbook. New York : McGraw-Hill, 1951,
ch. 2.

Solutions of the Vector Wave Equation
for Inhomogeneous Dielectric
Cylinders—Scattering
in Waveguide

GABRIELE CICCONI anp CARLO ROSATELLI

Abstract—Some solutions of the vector wave equation for an
inhomogeneous dielectric cylinder, suitable for numerical calcula-
tions of the scattered electromagnetic (EM) field in waveguide, are
presented in cases where the cylinder axis is parallel, or perpendicu-
lar, to the incident electric field vector. The scattered field, given in
terms of normal modes of the rectangular waveguide, permits easy
determination of the transmission and reflection coefficients for the
structure. The dielectric susceptibility may be considered as variable
along the cylinder radius according to a parabolic function
(Luneberg-type profile). Finally, numerical results of the scattered
near field are presented for Teflon cylinders of different diameters, in
the case of parallel polarization. They are compared with laboratory
measurements in the microwave X band made as a reliability test of
the computational program. The agreement between measured and
computed values is satisfactory within a deviation of 10 percent in the
whole frequency band.

1. INTRODUCTION

CATTERING and diffraction in free space by cylindri-
cal objects of homogeneous and stratified dielectric,
when the incident electromagnetic (EM) field is parallel or

Manuscript received November 29, 1976; revised May 23, 1977.
The authors are with the Electrical Engineering Department, University
of Genoa, Genoa, Italy.

perpendicularly polarized, have been investigated by var-
ious authors [1]. The inhomogeneous case has also been
treated for scattering by plasma columns [2].

The same problem in waveguide has been developed both
for parallel incidence, by solving the wave vector equation
in the case of inhomogeneous dielectric or plasma columns
[3]-[5], and for perpendicular incidence, by using varia-
tional and Green’s function techniques [6], [7].

In this paper, some exact solutions of the vector wave
equation, in circular cylindrical coordinates and for hom-
ogeneous and radially inhomogeneous (Luneberg-type par-
abolic variable profile) complex permittivities, are presented
in cases of parallel and perpendicular incidences of the EM
field. These solutions have been expressed in a series of
tabulated Bessel functions (homogeneous dielectric case) or
in a series of confluent hypergeometric or Kummer’s func-
tions (inhomogeneous parabolic case). They have been
found as suitable for developing numerical calculations of
microwave scattering in waveguide.

Approximate values dependent on the truncation of the
field series expansion may be estimated by the unitary
condition of the scattering matrix.

The numerical results concerning the scattered near field
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Fig. 1. The geometry of the probiem.

have been obtained using Teflon cylinders which had differ-
ent diameters and were placed as posts in rectangular
waveguide, only when their axes were parallel to the incident
electric field. These results are compared with those ob-
tained by laboratory measurements in the microwave X
band. The electric field was measured by using a slotted
guide section at the center of the waveguide, within a
- distance of a few wavelengths from the scatterer surface, in
reflection and transmission zones. In order to increase the
reliability of the measurements, different types of detectors

(crystal and bolometer) were used. )
The agreement between measured and computed values

may be considered reliable in the whole frequency band
within a deviation of the order of 10 percent for both
amplitudes and phases, when the complex permittivity has
value of 2.06 — {107 5.

II. THEORETICAL CONSIDERATIONS

A. Solutions of the EM Field in Dielectric Cylinders

Assuming the simple harmonic time dependence €', the
homogeneous vector wave equation in dielectric cylinders
can be written as

VxVXE — k?E =0 (1)

in the domain r < p, 0 <0 <2n, 0 < y < b, where o = k¢
and ¢ is the complex relative permittivity.

This equation is solved in cylindrical coordinates (r,0,y)
according to the geometry of Fig. 1.

We confine our attention to

s=1——x0(1—a;—22) 2)

where —y, is the axial susceptibility of the cylinder,
0 <a <1 is an inhomogeneity parameter, and p is the
cylinder radius. This choice is particularly suitable for
describing positive columns of discharge plasmas [2] or
dielectrics having permittivities of the Luneberg type.

The case of parallel incidence, where E = (0,0,E,), was
treated using a plasma inhomogeneous cylinder with a glass
container [5]. In this case by applying the Fourier method
(1) may be reduced to a system of two differential equations

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 11, NOVEMBER 1977

of which the one in r is a Whittaker equation [8]. This
equation for « = 0, i.e., for homogeneous dielectric, becomes
a Bessel equation. The equation in 0 is simply the Helmoltz
equation. The solution can be written in a Fourier series as

Er0)= Y ApnGylkr) cos md 3)

with
N N L N L Ll at LR
G,u(kr) = exp[ i 2%p (kr) kp k(kr)
o (m+1 hokp  m+1 ialoxe)? |\,
o"5 "

where hy, = 1 — y, and ¢(a,c,x) is the Kummer or confluent
hypergeometric function. The complex amplitudes A,, are
calculated by applying the usual boundary continuity condi-
tions for tangential electric and magnetic fields. :

_ In the case of perpendicular incidence for the EM field,
E = (E,,E,,0). Then (1) is reduced to a system of two scalar

(differential equations as follows:

1 °E, O*E, , 1 0E, 1 9°E,

ra T TR e )
1 2 2
10E, O°E, 16E,,=0. (5)
rdy ordy rd60dy

In applying the Fourier method to these equations, the
following solutions written in terms of TE (0,v) modes are
considered:

Ei0y)= 3 RO sin Yy ©)
Efrf)= 3 RO sin Ty ()

v=1
where v is an integer.

In this circumstance, (4) and (5), for ¢ given by (2), become,
respectively, a Kummer equation for R}(r) (which in the case
of homogeneous dielectrics becomes a Bessel-type equation
[8]) and a Helmoltz equation for ©}(6).

Hence by (5) we obtain the relation

JR}
R} ;:—[R,“+r - “@:(a)de ®)
where
®p= O, = A} cos pf + B}, sin pf
with p as a positive real integer.
The solution for R, may be written in the form
R}(r) = exp [—i3dr*]rP~?
- [Croib,.,, 1 + p; idr?) /
+ Dy(idr*) " ?$(b,, — p, 1 — p; idr?)]  (9)
where -
axo 1+p ik?
d? =22 k2 =-—"
P2 b=t

2
kY =k (1~ xo) — (\;)_n) .
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The amplitudes C}, and D), are calculated by applying the
continuity conditions of the tangential fields at the cylindri-
cal boundary surface.

B. Scattered Field in Rectangular Waveguide

The incident wave propagates along the waveguide axis in
the dominant mode TE (1,0). In the case of parallel incidence
to the cylinder axis, the scattered field is determined by
applying the image principle [3]-[5].

In cylindrical coordinates (r,0,y), as indicated in Fig. 1,
this is written as

ES(r,0) = Z B,HP(kr) cos nf

+ ZoQ Y. (=1PB,HP(kr,) cos nf, (10)
n=0 p=-o
p¥0

where k = w/c; r, is the distance from P(r,8) to 0, the pth
image of the 0 point; 8 ,is the /2 angle; and B, are calculated
by imposing the boundary condltlons

Equation (10) may be rewritten in a more suitable formin
terms of normal modes TE (v,0) of the rectangular wave-
guide. This goal may be attained by writing the Hankel
functions in the form of the Sommerfeld integral [9]; then, by
a suitable variable transformation, it is possible to use the
Poisson sum formula [10]. From (10) we have

® © 4 2y — 1 ; ]

Es‘(xz = Z z (il) Bn Evn COS‘( v )nxe Bav-1lz|
n=0 v=1 aﬂ2v-1 a

(11)

where (+) is for z > 0 (transmission zone), (—)isforz <0

(reflection zone),

2\ 1/2
-
(- 2)
2 1/2
——i[(ﬂ) —kZJ ,  v>1
a
1
ka

2v—1
e, =cos|n~ +incosh! M ,
v 2 ka

B

B, =
&1, = COS (n sin~

v>1

and a is the waveguide width in the x direction.

In the case of perpendicular incidence, the scattered field
is written in terms of TE (0,v) modes, by neglecting TE (,v)
(where u > 0) and TM (g, v) modes, as follows:

ES(y.2) Z B@ sin ( y) e (12)
where B, B, (v > 1) are expressed in terms of the waveguide
width b in the y direction and superscript (a) defines the
scattering zone in waveguide (z > 0, transmission zone, and
z < 0, reflection zone) for p? < (22 + y?). This formulation
may be considered a good approximation.
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0

Fig. 2. Decomposition of the electric field vector (perpendicular
incidence).

In cylindrical coordinates (12) may be rewritten in the
form

o0

E¥(r0,y) = Z

[ Br)+2 Z (Jz,,ﬂr)cos2n9

+iJ5_ 1 (Bur) sin (2n — 1)0 ) sin Ybf y} (13)
where the transmission zone is defined for 0 <0 < &, and
the reflection zone is defined for 7 < 6 < 2n.

C. Boundary-Value Conditions and Scattering Matrix

Our aim is to calculate the scattered Fourier amplitudes
B, by solving the boundary-value problem, along the cylin-
der surface, for every spectral harmonic of the field in
cylindrical coordinates. Thus an inhomogeneous linear
algebraic system is yielded whose dimension is dependent on-
the truncation index of the field series; this system is then
solved using a suitable numerical technique [5], [11].

In the case of parallel polarization, boundary conditions
are imposed on the tangential components of the field as
follows:

Ef(p) — E9'(p) = — Ey*(p)
0E;‘(r) B 6E§,y’(r) _ _6E;”°(r) (14)
or |-, o =, or |-,

Whereas, in the case of perpendicular polarization, the
scattered field is decomposed into the two orthogonal
components:

E¥ =E¥ cos 6 and E§ = E¥ sin 0

as shown in Fig. 2.

In this case the approach to numerical computation of
scattered Fourier amplitudes may be performed by choosing
a given number of waveguide normal modes for every
cylindrical harmonic of the field, and then by applying the

moment method [12], or the extended boundary conditions
(EBC) technique [13].
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with g, s=0, 1, 2, --- where the number of component

functions depends on the number of terms of the truncated

The scattering matrix may be readily calculated from (11)
and (13) by fixing reference planes P, and P, far from the
cylinder surface, as shown in Fig, 1. The distance of these
planes from the cylinder axis is chosen as an integer multiple
of the wavelength in guide (8, |z| = n2x, with n=0, 1,

0,7+
0 2 ¢ 6 3 o 1 1 5
(@)
1,3
t(le * Botom
,E—ml—+ ©  XTAL
— COMPUTED: € 22,06, E£107°
1.2+ .
Series.
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(b)
Fig. 3. Scattered total electric field versus distance from the scatterer
surface. Teflon cylinder (6-mm diameter). (a) Reflection zone. (b) Trans-
mission zone.

The linear algebraic system may be synthetically written
as

[ Fro.0.9)0,00.0) dS — | FP(0.0.5)0,0).(v) dS

=~ | Fi(p05)g 00y) ds. (15)

Here (3 |EY|? dV = finite, and the F; are, respectively,
¢E, E,, just given, and H,, which is the tangential magnetic
field, calculated by Maxwell equations; {g,} and {h} are
proper function sets chosen in a suitable fashion according
to the method of solution. For instance, for the EBC
solution, it is possible to choose

ST

(040} = eos a8} ()= fsin ()|

By assuming that the propagating mode is the only
dominant one (v = 1), the elements of the scattering matrix
are

Esc |P
Sii=——*+ =R 16
11 Emc |P1 ( )
which is the reflection coefficient, and
Einc Esc
S12= L};ﬁ =T (17)
E |P2

which is the transmission coefficient. The incident field at P,
is

. X o
E™|p, =cos —,  for parallel incidence
a

. . T
E™|p, = sin —y,

b for perpendicular polarization.

For symmetry, the other elements are

S12=§2—1 and S22 =S—17
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Fig. 4. Scattered total electric field versus distance from the scatterer

surface. Teflon cylinder (22.86-mm diameter). (a) Reflection zone. (b)
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7mm

so that

det S = |51112+ |521|2= |R|2+ |T|2 (18)

which, for a lossless structure, is equal to unity.

In a reference calculation for real permittivity, the error
due to truncation of the field series may be evaluated by the
deviation from the unitary condition.

II1. NUMERICAL CALCULATION AND MEASUREMENTS
OF SCATTERED FIELDS

In the case of parallel polarization, a computational
program was developed for scattered field calculations [14].
In order to gain information to estimate the reliability of the
computational program for (11), laboratory measurements
in the microwave X band of the scattered electric field
component at the center of the waveguide, along the axis,
were carried out for a Teflon cylinder having two typical
diameters (6 and 22.86 mm, the latter corresponding to WR
90 waveguide inner width).

REFL.ZONE
TEFLON 22,86 mm DIAM.
FREQ., 82 GHz

[ Exp. ERROR

16 18 20 22 24 26 28 30 mm

In reflection and transmission zones the scattered fields
were measured, using a slotted guide device from a 0.5-mm
minimum distance to the cylinder surface over a length not
exceeding 10 cm. Both bolometer and crystal detectors,
connected to untuned electrostatic probes sliding along the
waveguide and having adjustable penetration, were used for
detection of the field amplitude.

In order to increase measurement accuracy and avoid
nonlinear effects in detection operation due to amplitude
excursion of the measured field along the waveguide, the
detector current was kept constant by adjusting the level of
the microwave standard source through a variable precision
attenuator.

The maximum deviation of the measured values obtained
by crystal and bolometer rectifiers, due essentially to the
different impedance of the detector probes in the whole X
band, was of the order of 3 percent.

Numerical calculations of the scattered electric field along
the waveguide axis were performed for values of the real part
of cylinder permittivity in the interval 1.90 < e < 2.10, and
for values of the imaginary part 10”3 < ¢, < 10~ *. The post
diameters were 6.00 and 22.86 mm; frequencies in the X
band and standard waveguide WR 90 (RG 52/U) were used.

The best match between the computed and measured
values was reached for ¢ = 2.06 — i10~ >, as shown in the
diagrams of Figs. 3 and 4. The values-refer to the total
electric field amplitude, that is, the sum of the incident and
scattered field vectors.

The deviation between computed and measured values
was kept within 10 percent. The comparison was made by
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Fig. 5. Reflection coefficient amplitude versus frequency. Teflon cylinder
(6-mm diameter).
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Fig. 6. Reflection coefficient amplitude versus frequency. Teflon cylinder
(22.86-mm diameter).

taking into account the standing wave ratio and the first
minimum  position, when 200 <& <206 and
1075 <& <1072

In Figs. 5 and 6 the amplitudes of the reflection coefficient
versus frequency are illustrated in the cases considered. For
the 22.86-mm post, a resonance was detected on the

frequency of 10.76 +0.02 GHz as a minimum of the
reflection coefficient amplitude (Fig. 6). This frequency
corresponds exactly to the computed value for £ = 2.06.
The amplitude measured at resonance was practically zero.
This behavior is in agreement with computation results
when ¢, is negligible. The resonance situation allows us to
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TABLE 1

A) Teflon cylinder diameter 6 mm .

Frequency 10 GCHz:

= 2.06 -~ 1 107°
By = - 0,0864310 - i0,20656900, Mod By = 0,279400.
By = - 0,0249330 + i0,0005103, Mod By = 0,024939.
Bz = (0,050164 + 10,154210)10'3 Mod By = 0,162170.10'3.
By = (-0,230520 + 10,004802)10'5, Mod B, = 0,230570.10'5.
Bg = (0,002447 + 10,191960)10_7, Mod B, = 0,201870.10" .
B, = (0,051740 - 10,013477)10'10, Mod B, = o,e5188.1o'10.

Test for unitary condition of the scattering matrix:

Mod R = 0,28947, Mod T = 0,95690, (Mod R)Z + (Mod T)° = 0,999449.
B) Teflon cylinder diameter 22.86 mm.

Frequency 8.2 GHz,

e= 2.06 - 1107°
By = 0,334760 - i0,312990, Mod By = 0,458292.
B, = - 0,156300 + i0,937690, Mod B, = 0,950630.
Bz = 0,0785330+ i0,073429, Mod B3 = 0,107510.
By = - 0,0018428+ i0,011056, Mod B, = 0,011209.
By = 0,0016098+ i0,0015052, Mod Bg = 0,22038.
Bg = (0,020352- 10,122080)10_3, Mod By = 0,123770.1073
B, = (-0,18402- i0,172910)107 3, Mod B, = 0,25317.1075
Bg =  (-0,03330+ 10,199760)107°, Mod Bg = 0,202510.10°0

Test for unitary conditi

Mod R = 0,553567, Mod T = 0,8

on of the scattering matrix:

3277, (Mod R)° + (Mod T)? = 0,999941.

estimate the best computed measured fitting with greater
accuracy. In fact, the value gy essentially determines the
frequency of resonance, while an increase in g, produces an
enlargement of the resonance curve and an increase in the
amplitude at the resonance frequency. The sensitivity of the
measurement may be computed from the shift of the reso-
nance frequency due to the variation of & by the coefficient
0fo /0eg which, in our case, has value of —4 GHz. A variation
in gg from 2.06 to 2.00 shifts the resonance frequency from
10.76 to 11.00 GHz.

In Table I, the computed values of the complex ampli-
tudes B, for the cases illustrated in Figs. 3 and 4 are set out
together with the data relevant to the test of the unitary
condition for the scattering matrix. This table shows the fast
convergence of the computations of the scattering field in the
cases considered.

IV. CONCLUSION

In this paper, the solutions of the vector wave equation in
cylindrical coordinates have been applied to numerical
calculations of the scattered electric field in waveguide, only
when the polarization of the incident wave is parallel to the
cylinder axis. These solutions have been verified by compar-
ing the measurement results obtained in experimental tests
in simple cases, where homogeneous Teflon cylinders were
used, with the results obtained in the calculation of the

scattering coefficients carried out for a reliable value of
the Teflon permittivity. The comparison shows that
the formulation adopted may be considered as a suitable
and powerful tool for calculations concerning plasma diag-
nostics [5], as well for the study of the propagation of EM
fields in optic fibers where inhomogeneous dielectrics are
involved.
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Some Effects of Field Perturbation upon
Cavity-Resonance and Dispersion
Measurements on MIC
Dielectrics

P. H . LADBROOKE

Abstract—An analysis is presented of field perturbations in MIC
resonators in order to examine the errors which occur in permittivity
measurements made by cavity-resonance methods: Q factor, cou-
pling effects, fringing fields, crystal misalignment (for anisotropic
materials), and changes in ambient temperature are all considered.
Analysis of a cavity with mixed boundary conditions shows that the
resonant-mode frequencies depend to the first order on that part of Q,
associated with imperfect electric (metal) walls, but to the second
order on that part associated with imperfect magnetic (open-circuit)
walls. A new expression is given for the Q of an open-ended microstrip
resonator when surface waves are excited in the dielectric, and it is
shown that the unloaded Q (Q,) can be dominated by this phen-
omenon, It is further shown that these Q-related effects, together with
reactive perturbations arising from fringing and coupling structures,
are the principal source of error in measurements for ¢ or ¢.;. Such
reactive effects may be treated semiquantitatively by applying
Slater’s perturbation theorem to the affected region. These
procedures lead to the following revised values for the crystal
permittivity of sapphire (monocrystalline Al,O5) in the microwave
region: ¢ (parallel to the ¢ axis) = 11.6; ¢, (base-plane) = 9.4.

I. INTRODUCTION

LTHOUGH alumina (ceramic Al,O;) finds more
Awidespread application in hybrid microwave integrated
circuits than does sapphire (monocrystalline Al,O ), sap-
phire offers the following advantages (against which one
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must offset its higher cost): i) its electrical properties are
exactly repeatable from sample to sample; ii) it can be
polished optically flat, which means that lower loss circuits
of greater precision can be constructed by thin-film
techniques; iii) it is transparent, so it is possible to align
optically a “flipped” device chip for bonding directly into a
microstrip circuit without the parasitic inductance of bond
wires; iv) it is compatible with silicon epitaxial technology
(SOS). Given these kinds of application, the need to measure
the dielectric properties of either substrate material at
microwave frequencies is clear.

A number of papers have been published dealing with test
structures which can be made by thin-film metallizing the
substrate itself, leading either to the permittivity ¢ directly
[1]-[4], to an effective permittivity € in the case of micro-
strips [5], or to some secondary variation such as the
temperature ‘coefficient (1/¢)(0e/0T) [6]. All of these test
circuits were, and still are, in the nature of cavity resonators
with one dimension thin (<A), often with mixed boundary
conditions (i.e., some electric walls, some magnetic walls).
The object was in every case to retrieve the permittivity from
cavity-resonance measurements made upon the structure,
using the relationship [7]

I A LA
g_ﬁ 2y, 2z,

1)



