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Solutions of the Vector Wave Equation
for

Abstract--Some solutions of the

Inhomogeneous Dielectric
Cylinders-Scattering

in Waveguide
GABRIELE CICCONI AND CARLO ROSATELLI

vector wave equation for an
inhomogeneous dielectric cylinder, suitable for numerical calcula-

tions of the scattered electromagnetic (EM) field in waveguide, are
presented in cases where the cylinder axis is parallel, or perpendicu-
lar, to the incident eleetric field vector. The scattered field, given in
terms of normal modes of the rectangular waveguide, permits easy
determination of the transmission and reflection coefficients for the
structure. The dielectric susceptibility may be considered as variable
along the cylinder radius according to a parabolic fnnction
(Lnneberg-type profile). Finally, numerical results of the scattered

near field are presented for Teflon cylinders of different diameters, in
the case of parallel polarization. They are compared with laboratory
measurements in the microwave X band made as a reliability test of

the computational program. The agreement between measured and
computed values is satisfactory within a deviation of 10 percent in the
whole frequency band.

I. INTRODUCTION

sCATTERING and diffraction in free space by cylindri-
cal objects of homogeneous and stratified dielectric,

when the incident electromagnetic (EM) field is parallel or

Manuscript received November 29, 1976; revised May 23, 1977.
The authors are with the Electrical Engineering Department, University

of Genoa, Genoa, Italy.

perpendicularly polarized, have been investigated by var-

ious authors [1]. The inhomogeneous case has also been

treated for scattering by plasma columns [2].

The same problem in waveguide has been developed both

for parallel incidence, by solving the wave vector equation

in the case of infiomogeneous dielectric or plasma columns

[3]:[5], and for perpendicular incidence, by using varia-

tional and Green’s function techniques [6], [7].

In this paper, some exact solutions of the vector wave

equation, in circular cylindrical coordinates and for hom-

ogeneous and radially inhomogeneous (Luneberg-type par-

abolic variable profile) complex permittivities, are presented

in cases of parallel and perpendicular incidence of the EM

field. These solutions have been expressed in a series of

tabulated Bessel functions (homogeneous dielectric case) or

in a series of confluent hypergeometric or Kummer’s func-

tions (inhomogeneous parabolic case). They have been
found as suitable for developing numerical calculations of

microwave scattering in waveguide.

Approximate values dependent on the truncation of the

field series expansion may be estimated by the unitary

condition of the scattering matrix.

The numerical results concerning the scattered near field
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Fig. 1. The geometry of the problem.

have been obtained using Teflon cylinders which had differ-

ent diameters and were placed as posts in rectangular

waveguide, only when their axes were parallel to the incident

electric field. These results are compared with those ob-

tained by laboratory measurements in the microwave X

band. The electric field was measured by using a slotted

guide section at the center of the waveguide, within a

distance of a few wavelengths from the scatterer surface, in

reflection and transmission zones. In order to increase the

reliability of the measurements, different types of detectors

(crystal and bolometer) were used.
The agreement between measured and computed values

may be considered reliable in the whole frequency band

within a deviation of the order of 10 percent for both

amplitudes and phases, when the complex permittivity has

value of 2.06 – i 10 - 5.

II. THEORETICAL CONSIDERATIONS

A. Solutions of the EM Field in Dielectric Cylinders

Assuming the simple harmonic time dependence eiti, the

homogeneous vector wave equation in dielectric cylinders

can be written as

inthedomain r<p, O<~< 2n,0<y< b,whereco=kc

and & is the complex relative permittivity.

This equation is solved in cylindrical coordinates (r,O,y)

according to the geometry of Fig. 1.

We confine our attention to

() r’
e=l—~~ l—ct~

P
(2)

where – XO is the axial susceptibility of the cylinder,

0 s a <1 is an inhomogeneity parameter, and p is the

cylinder radius. This choice is particularly suitable for

describing positive columns of discharge plasmas [2] or

dielectrics having permittivities of the Luqeberg type.

The case of parallel incidence, where E = (O,O,EY), was

treated using a plasma inhomogeneous cylinder with a glass

container [5]. In this case by applying the Fourier method

(1) may be reduced to a system of two differential equations

of which the one in r is a Whittaker equation [8]. This

equation for a = O,i.e., for homogeneous dielectric, becomes

a Bessel equation. The equation in Ois simply the Hehnoltz

equation. The solution can be written in a Fourier series as

EY(r,O) = f A~Gm(kr) cos m6 ‘ (3)
~=()

with

[ “%’kr)21”[’’2r+1”k(kr)G.(kr) = exp – z

(

m+l
“ @ ~ + i ~($$,~, ~; ‘“(~j)l’2 (kr)’)

where hO = 1 — ~0 and #(a,c,x) is the Kurnmer or confluent

hypergeometric function. The complex amplitudes Am are

calculated by applying the usual boundary continuity condi-

tions for tangential elec~ric and magnetic fields. t

In the case of perpendicular incidence for the EM field,

E = (E,,Ee,O). Then (1) is reduced to a system of two scalar
differential equations as follows:

1 a2Er a’Er 1 82E@
—+k2cEr– L~0––

rz a92 + ayz rz ao
—=0 (4)

r i% ao

~+~+:~=o. (5)
1 aE

; ay

In applying the Fourier method to these equations, the

following solutions written in terms of TE (O,v) modes are

considered:

E,(r,6,y) = f RJ(r)@~((3) sin ~ y (6)
~=1

EO(r,(3,y) = f R~(r)@ ;(@) sin ~ y (7)
“= 1

where v is an integer.

In this circumstance, (4) and (5), fore given by (2), become,

respectively, a Kummer equation for R;(r) (which in the case

of homogeneous dielectrics becomes a Bessel-type equation

[8]) and a Helrnoltz equation for @J($).

Hence by (5) we obtain the relation

where

with p as a

R;(3; = -~~++]m~)~o(8)

@;=@;=A; cos p(3 + B; sin pO

positive real integer.
The solution for R, may be written in the form

R:(r) = exp [– i@2]rp- 1

- [Cj@(bP,v, 1 + p; idrz) ,

+ Wdr2)-pd@,v - P, 1 -P; idr2)l (9)

where

& _ ‘XO kz bp,v=~+$
P2

()
k: = kz(l – Xo) – f 2.
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The amplitudes C; and D; are calculated by applying the

continuity conditions of the tangential fields at the cylindri-

cal boundary surface.

B. Scattered Field in Rectangular Waveguide

The incident wave propagates along the waveguide axis in

the dominant mode TE (1,0). In the case of parallell incidence

to the cylinder axis, the scattered field is determined by

applying the image principle [3]-[5].

In cylindrical coordinates (r,O,y), as indicated in Fig, 1,

this is written as

E~(r,O) = ~ B. Hj2)(kr) cos n6
~=o

mm

+ ~ ~ (- l)pB.H~2)(krP) cos n~p (10)
*=0 ~=–m

p#o

where k = oJ/c; rp is the distance from P(r,O) to IOP,the pth

image of the Opoint; i3pis the $Z angle; and Bnare calculated

by imposing the boundary conditions.

Equation (10) may be rewritten in a more suitable form in

terms of normal modes TE (v,O) of the rectangular wave-

guide. This goal may be attained by writing the Hankel

functions in the form of the Sommerfeld integral [!)]; then, by

a suitable variable transformation, it is possible to use the

Poisson sum formula [10]. From (10) we have

4EV,n cos(2v – 1) ~Xe@2V-11=1
E~(x,z) = ~ ~ (+ i)”B. —

af32v-1 a~=o “=1

(11)

where (+) is for z >0 (transmission zone), (–) is for z <0

(reflection zone),

flv=-i[iY-k2r2‘>’
‘ln=cos(nsin-’a

i (2V - l)Z
E v, n = cos n: + in cosh-i

)ka ‘
V>l

and a is the waveguide width in the x direction.

In the case of perpendicular incidence, the scattered field

is written in terms of TE (O,v) modes, by neglecting TE (p,v)

(where ,u > O) and TM (p, v) modes, as follows:

where /l ~,/3, (v > 1) are expressed in terms of the waveguide

width b in the y direction and superscript (a) defines the

scattering zone in waveguide (z >0, transmission zone, and

z <0, reflection zone) for p2 < (Z2 + y2). This formulation

may be considered a good approximation.

o
Fig. 2. Decomposition of the electric fieid vector (perpendicular

incidence).

In cylindrical coordinates (12) may be rewritten in the

form

[
E:(r,fil,y) = f B, .JO(fl,r) + 2 f (.J2.(/3,r) cos 2n(3

“=1 ~=1

)]+ iJ2. _ ~(D,r) sin (2n – 1)0 sin ~ y (13)

where the transmission zone is defined for O s f3 < Z, arid

the reflection zone is defined for z <0< 2z.

C. Boundary-Value Conditions and Scattering Matrix

Our aim is to calculate the scattered Fourier amplitudes

B. by solving the boundary-value problem, along the cylin-

der surface, for every spectral harmonic of the field in

cylindrical coordinates. Thus an inhomogeneous linear

algebraic system is yielded whose dimension is dependent on.

the truncation index of the field series; this system is then

solved using a suitable numerical technique [5], [11].

In the case of parallel polarization, boundary conditions

are imposed on the tangential components of the field as

follows :

dE~(r) %“(r) dE~(r)
— . (14)

dr ‘- ar ,=, = – i%~=p ~=p

Whereas, in the case of perpendicular polarization, the

scattered field is decomposed into the two orthogonal

components:

as shown in Fig. 2.
In this case the approach to numerical computation of

scattered Fourier amplitudes may be performed by choosing

a given number of waveguide normal modes for every

cylindrical harmonic of the field, and then by applying the

moment method [12], or the extended boundary conditions

(EBC) technique [13].
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with q, s=O, 1, 2, “.” where the number of component

functions depends on the number of terms of the truncated

series.

The scattering matrix may be readily calculated from(11)

and (13 ) by fixing reference planes PI and Pz far from the

cylinder surface, as shown in Fig. 1. The distance of these

planes from the cylinder axis is chosen as an integer multiple

of the wavelength in guide (/?l Iz I = n2n, with n = O, 1,I

I 2, -. .).

o,9d I By assuming that the propagating mode is the only
01234 ii. ;E 9 mm

dominant one (v = 1), the elements of the scattering matrix,.
(b) are

Fig. 3. Scattered total electric field versus distance from the scatterer
surface. Teflon cylinder (6-mm diameter). (a) Reflection zone. (b) Trans-
mission zone. S1l.~_R

E’”c IPI

The linear algebraic system may be synthetically written which is the reflection coefficient, and

~ _ (Einc + Esc)p2 =
12 — Einc 1P2

(16)

T (17)

= -j F~(P>~>Y)gJO)h~(Y) ds (15) is
which is the transmission coefficient. The incident field at P ~

s

Here ~v IE(y)12dV = finite, and the Fj are, respectively, E’”’ lP, = ~os :, for parallel incidence
tEr,EO, just given, and HY, which is the tangential magnetic

field, calculated by Maxwell equations; {gq} and {hJ are

proper function sets chosen in a suitable fashion according

to the method of solution. For instance, for the EBC
E’”’ IPI = sin ~, for perpendicular polarization.

solution, it is possible to choose
For symmetry, the other elements are

{9,(0 = {Cos @ {h,(y)}= {sin (~y)}
s~~ = s~~ and L& = S,l
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Fig. 4. Scattered total electric field versus distance from the scatterer
surface. Teflon cylinder (22.86-mm diameter). (a) Reflection zone. (b)
Transmission zone.

so that

det S= 1S1112+ 1S2,12= 1R12+ ITI” (18)

which, for a lossless structure, is equal to unity.
In a reference calculation for real permittivity,, the error

due to truncation of the field series maybe evaluated by the

deviation from the unitary condition.

III. NUMERICAL CALCULATION AND MEASUREMENTS

OF SCATTERED FIELDS

In the case of parallel polarization, a computational

program was developed for scattered field calculations [14].
In order to gain information to estimate the reliability of the

computational program for (11 ), laboratory measurements

in the microwave X band of the scattered electric field

component at the center of the waveguide, along the axis,

were carried out for a Teflon cylinder having two typical

diameters (6 and 22.86 mm, the latter corresponding to WR

90 waveguide inner width).

,-
22 28

———
30 mm

8$9

In reflection and transmission zones the scattered fields

were measured, using a slotted guide device from a 0.5-mm

minimum distance to the cylinder surface over a length not

exceeding 10 cm. Both bolometer and crystal detectors,

connected to untuned electrostatic probes sliding along the

waveguide and having adjustable penetration, were used for

detection of the field amplitude.

In order to increase measurement accuracy and avoid

nonlinear effects in detection operation due to amplitude

excursion of the measured field along the waveguide, the

detector current was kept constant by adjusting the level of

the microwave standard source through a variable precision

attenuator.

The maximum deviation of the measured values obtained

by crystal and bolometer rectifiers, due essentially to the

different impedance of the detector probes in the whole X

band, was of the order of 3 percent.

Numerical calculations of the scattered electric field along

the waveguide axis were performed for values of the real part

of cylinder permittivit y in the interval 1.90 ss R <2.10, and

for values of the imaginary part 10-5 <&~< 10-1. The post

diameters were 6.00 and 22.86 mm; frequencies in the X

band and standard waveguide WR 90 (RG 52/U) were used.
The best match between the computed and measured

values was reached for c = 2.06 — i10 – 5, as shown in the

diagrams of Figs. 3 and 4. The values. refer to the total

electric field amplitude, that is, the sum of the incident and

scattered field vectors.

The deviation between computed and measured values

was kept within 10 percent. The comparison was made by
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Fig. 5. Reelection coefficient ampfitude versus frequency. Teflon cylinder

(6-mm diameter).
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Fig. 6. Reflection coefficient ampfitude versus frequency. Teflon cylinder
(22.86-mm diameter).

taking into account the standing wave ratio and the first frequency of 10.76 ~ 0.02 GHz as a minimum of the
minimum position, when 2.00< c ~ <2.06 and reflection coefficient amplitude (Fig. 6). This frequency
10-~ < e~ <10-2. corresponds exactly to the computed value for eR = 2.06.

In Figs. 5 and 6 the amplitudes of the reflection coefficient The amplitude measured at resonance was practically zero.
versus frequency are illustrated in the cases considered. For This behavior is in agreement with computation results
the 22.86-mm post, a resonance was detected on the when :1 is negligible. The resonance situation allows us to
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TABLE I

891

A) Teflon cylinder diameter 6 mm .

Frequency 10 GHz:

c= ?.06 - I 10-5

B1 = - 0,0864310 - i0,2656900, Mod B1 = 0,279400.

B2 = . o,o~49330 + io, ooo5103, Mod BZ = 0,024939.

B3 = (0,050164
-3

+ i0,154?10)10 Mod B3 = 0,16? 170.10-3.

B4 = (-0,230520 + i0,004802) 10-5, Mod B4 = 0,230570.10-5.

= (0,062447
-7 -7

‘5
+ 10,191960)10 , klod B5 = 0,201870.10 .

= (0,651740
-lo -lo

‘6
- i0,013477)10 , Ilod B6 = O, I)5188.1O .

Test for unitary condition of the scattering matrix:

Mod R = 0,28947, Mod T = 0,95690, (Mod R)2 + (!lod T)2 = 0,999449.

B) Teflon cylinder diameter ?.2 .86 mm

Frequency 8.2 GHz,

-5
c= 2.06 - I1O

B~ = 0,334760 - i0,312990, Mod BI = 0,458292.

B2=- 0,156300 + i0,937690, Llod B2 = 0,950630.

B3 . 0,078 S330+ i0,073429, Mod B3 = 0,107510.

B4 = - 0,0018428+ i0,011056, \[od B4 = 0,011209.

Bs =
0,0016098+ i0,001505?, Mod B5 = 0,22038.

B6 = (0,020352- ,0,122080 )10”3, Mod B6 = 0,123770 .10-3

B7 ‘ (-0,18492- i0,17Z910) 10-5, Jfod B7 = 0,25317 .10-5

B8 = (-0,03330+ 10,199760 )10-6, Mod B8 = 0,202510 .10-6

Test for unitary condition of the scattering matrix:

Mod R = 0,553567, Mod T = 0,83277, (Mod R) 2
2

+ (~lod T) = 0,999941.

estimate the best computed measured fitting with greater

accuracy. In fact, the value &R essentially determines the

frequency of resonance, while an increase in&l produces an

enlargement of the resonance curve and an increase in the

amplitude at the resonance frequency. The sensitivity of the

measurement may be computed from the shift of the reso-

nance frequency due to the variation of ER by the coefficient

d~O/d&R which, in our case, has value of – 4 GHz. A variation

in &Rfrom 2.06 to 2.00 shifts the resonance frequency from

10.76 to 11.00 GHz.

In Table I, the computed values of the complex ampli-

tudes B. for the cases illustrated in Figs. 3 and 4 are set out

together with the data relevant to the test of the unitary

condition for the scattering matrix. This table shc~ws the fast

convergence of the computations of the scattering field in the

cases considered.

IV. CONCLUSION

In this paper, the solutions of the vector wave equation in

cylindrical coordinates have been applied to numerical
calculations of the scattered electric field in waveguide, only

when the polarization of the incident wave is parallel to the

cylinder axis. These solutions have been verified by compar-

ing the measurement results obtained in experimental tests

in simple cases, where homogeneous Teflon cylinders were

used, with the results obtained in the calculation of the

scattering coefficients carried out for a reliable value of

the Teflon permittivity. The comparison shows that

the formulation adopted may be considered as a suitable

and powerful tool for calculations concerning plasma diag-

nostics [5], as well for the study of the propagation of EM

fields in optic fibers where inhomogeneous dielectrics are

involved.
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Some Effects of Field Perturbation upon
Cavity-Resonance and Dispersion

Measurements on MIC
Dielectrics

P. H. LADBROOKE

Abstract—An analysis is presented of field perturbations in MIC

resonators in order to examine tbe errors which occur in permittivity

measurements made by cavity-resonance methods: Q factor, cou-

pling effects, fringing fields, crystal misalignment (for anisotropic
materials), and changes in ambient temperature are all considered.

Analysis of a cavity with mixed boundary conditions shows that the
resonant-mode frequencies depend to the first order on that part of QO
associated with imperfect electric (metal) walls, but to the second

order on that part associated with imperfect magnetic (open-circuit)
walls. Anew expression is given for the Q of an open-ended microstrip
resonator when surface waves are excited iu the dielectric, aud it is

shown that the uuloaded Q (Qo) cau be domiuated by this phen-

omenon. It is further shown that these Q-related effects, together with
reactive perturbations arising from fringing and coupling structures,
are the principal source of error iu measurements for e or t ,fr. Such

reactive effects may be treated semiquantitatively by applying
Slater’s perturbation theorem to tbe affected region. These

procedures lead to the following revised values for the crystal

permittivity of sapphire (monocrystalline A1203) in the microwave
region: s,, (parallel to the c axis) = 11.6; Cl (base-plane) = 9.4.

I. INTRODUCTION

A LTHOUGH alumina (ceramic AIZO ~) finds more

widespread application in hybrid microwave integrated

circuits than does sapphire (monocrystalline A120 ~), sap-

phire offers the following advantages (against which one
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must offset its higher cost ): i) its electrical properties are

exactly repeatable from sample to sample; ii) it can be

polished optically flat, which means that lower loss circuits

of greater precision can be constructed by thin-film

techniques; iii) it is transparent, so it is possible to align

optically a “flipped device chip for bonding directly into a

microstrip circuit without the parasitic inductance of bond

wires; iv) it is compatible with silicon epitaxial technology

(SOS). Given thesekindsofapplication, the need to measure

the dielectric properties of either substrate material at

microwave frequencies is clear.

A number of papers have been published dealing with test

structures which can be made by thin-film metallizing the

substrate itself, leading either to the permittivity e directly
[1]-[4], to an effective permittivity e.,, in the case of micro-
strips [5], or to some secondary variation such as the

temperature ‘coefficient (1/E) (&/dT) [6]. All of these test

circuits were, and still are, in the nature of cavit y resonators

with one dimension thin (<1), often with mixed boundary

conditions (i.e., some electric walls, some magnetic walls).

The object was in every case to retrieve the permittivity from

cavity-resonance measurements made upon the structure,

using the relationship [7]

‘=H+)2+(2)2) (1)


